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Abstract We adopted an absolute-reaction model which is considering the hole
(defect)-induced charged frictionless transport to explain the unusual experiment: Two
single crystalline samples of the same nominal composition Rb0.8Fe2Se2 were pre-
pared using the self-flux technique via two different precursor routes. Although the
difference in the final chemical composition falls within a narrow range, one was
superconducting with a Tc ∼ 31 K, while the other behaves like a narrow gap semi-
conductor.

Keywords Absolute reaction · Boundary perturbation · Chemical proximity

1 Introduction

Discovery of charged superfluidity in Kx (FeSe)2 (Tc ∼ 30 K) [1] is one more step
on the way to comprehend the mechanism of charged superfluidity in the family of
layered Fe-based compounds (Fe-based chalcogenide [2]). Note that Fe (iron) itself
under pressure is a superconductor with Tc ∼ 1.8 K at 20 GPa [3]. After chemical
doping with Se, FeSe becomes superconducting (SC) with Tc = 8 K and it has a simple
PbO-type structure and a similarity to the critical FeAs4-tetrahedra layers found in all
iron-based superconductors [4].

Quite recently (within less than one year) successful intercalation of other alkali
metals (Rb) in FeSe was realized and SC samples with Tc between 30 and 33 K were
prepared [5–11]. Further studies of SC chalcogenides with hypothetical stoichiometry
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Rb0.8Fe2Se2 revealed significant differences in their SC properties compared to the
related SC pnictides with a similar structural arrangement (cf. [7–11]).

Note that when superconductive, a material has an electrical resistance of exactly
zero. Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes, who was
studying the resistance of solid mercury at cryogenic temperatures using the recently-
discovered liquid helium as a refrigerant. At the temperature of 4.2 K, he observed
that the resistance abruptly disappeared [12]. All superconductors have exactly zero
resistivity to low applied currents when there is no magnetic field present or if the
applied field does not exceed a critical value.

In fact SC could be thought of as a charged superfluidity: Condensed electrons
flow without energy dissipation [13]. However, as briefly introduced above, struc-
tural distortions under pressure and chemical doping in complicated compounds play
important role for the onset of SC. The most interesting report is in Gooch et al. [11]:
Two single crystalline samples of the same nominal composition Rb0.8Fe2Se2 were
prepared using the self-flux technique via two different precursor routes following
the same thermal history. Both samples display the same ThCr2Si2-structure with
only slight differences in lattice parameters and the actual chemical composition as
revealed by the WDS analysis. Although the difference in the final chemical compo-
sition falls within a narrow range, one was SC with a Tc ∼ 30 K, while the other
behaves like a narrow gap semiconductor.

As remarked in Gooch et al. [11]: The results suggest that superconductivity in
this family of Fe-chalcogenides depends sensitively not just on doping as reflected
in the chemical composition but also on the defects (Fe and/or Rb vacancies) and
their state (ordered and/or disordered) present in the samples (please cf. [9] or [7]
for the latter issue). Based on this concern, in this short paper, we shall adopt the
quantum chemistry approach [14–17] to investigate the defect(hole)-induced charged
superfluidity considering especially previous measurements about Rb0.8Fe2Se2 [11].
The theoretical part will be introduced in the next Section. Most of the theoretical
details of our approaches could be traced in the verified reports [18–20] (especially
[20] for the hole-induced onset of SC). In fact Eyring’s idea: The free jumping of
atoms or composite particles into the nearest neighboring vacancies through the kinetic
zero-point motion (because these fluidized vacancies are moved about cooperatively
by neighboring atoms or composite particles jumping into them, a vacancy confers
gas-like degrees of freedom on three vibrational degrees of freedom) have successfully
been applied to the study of quantum liquids (He-3 down to 1 K and He-4 down to 0.1
K with good comparison with experiments) [21,22]. Our focus will be on the onset
temperature of the SC or charged superfluidity considering the almost zero resistance
below the onset temperature. We shall demonstrate the effects of activation volume
upon the defect-induced SC as well as the chemical doping about RbyFe2−x Se2 based
superconductors.

2 Theoretical formulations

Eyring and Polanyi using the London equation provided a semi-empirical calculation
of a potential energy surface (PES) of the H+H2 reaction describing the journey of
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nuclei from the reactant state of the system to the product state, passing through the
crucial transition of activated complexes [14] (the birth of reaction dynamics). Sub-
sequently the molecular theory of deformation kinetics came from a different stream
of science than that of structure and motion of crystal defects (in particular disloca-
tions). Its roots stretch to the developmental stages of theories of chemical reactions
and thermodynamic description of their temperature dependence, culminating in the
key formulation by Arrhenius of the equation for reaction rates (the transition-state
(TS) theory is to assume the equilibration of the population between reactants and the
transition state:

A (e.g., Rb)+ B (e.g., FeSe) ↔ [TS] → products;

thus, the rate constant can be related to the equilibrium constant for formation of the
transition state and hence the barrier energy (with the zero-point energy corrections)
along the reaction coordinate [15,16]). Around the beginning of twentieth century the
concept of activation entropy (reflects the change in vibrational modes perpendicular
to the reaction coordinate) was included in the model, and it was considered that
molecules go both in the forward direction (product state) and in the backward direction
(reactant state).

We remind the readers that the development of statistical mechanics, and later
quantum mechanics, led to the concept of the PES. This was a very important step
in our modern understanding of microscopic models of deformation. The motion of
composite particles is represented in the configuration space; on the potential surface
the stable composite particles are in the valleys, which are connected by a pass that
leads through the saddle point. A (composite) particle at the saddle point is in the
transition (activated) state. Under the action of an applied stress the forward velocity
of a flow unit is the net number of times it moves forward, multiplied by the distance it
jumps. Eyring proposed a specific microscopic model of the amorphous structure and
a mechanism of the flow [14–17]. A kind of (quantum) tunneling (possible between
defects or holes) which relates to the matter rearranging by surmounting a potential
energy barrier should occur during the microscopic deformation.

Note that in the transport of a (electronic) liquid or condensed state the motion of
individual particles no longer dominates. A simple picture, according to Eyring [16],
is that momentum transport is due to processes that involve the motion of vacancies
or holes. These processes can be viewed as thermally activated transitions in which a
particle or a cluster moves from one local energy minimum to another [18,19]. The
viscosity of a liquid (condensed) state has a very strong dependence on temperature.
As we shall illustrate the details below that the overall approach involves Planck’s
constant (h) [14–20]. The appearance of h is related to Eyring’s assumption that the
collision time of the composite particles is h/(kB T ), the shortest timescale in a liquid
or condensed state with kB being the Boltzmann constant.

With the Eyring’s TS model [14–17] (of stress-biased thermal activation), structural
rearrangement is associated with a single energy barrier (height) E that is lowered or
raised linearly by a shear (yield) stress τ . If the transition rate is proportional to the
shear strain rate (with a constant ratio: K0 ≈ 2Va/Vm), we can calculate the shear
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stress or resistance (∝ ρR : the resistivity [19,20]) for the electronic fluid (or liquid)

τ = E

Va
+ kB T

Va
ln

(
η̇

K0ν0

)
, (1)

where Va is the activation volume, η̇ is the shear strain rate, ν0 is an attempt frequency
[16,17], e.g., for temperatures (T ) being O(1) K: ν0 ≈ kB/h ∼ O(1011) (1/s).
Normally, the value of Va is associated with a typical volume required for a molecular
shear rearrangement. Here Vm = λ2λ3λ1, λ2λ3 is the cross-section of the transport
unit on which the shear stress acts and λ1 is the perpendicular distance between two
neighboring layers of (composite) particles sliding past each other [16].

After using the forcing parameter � (as the force balance gives the shear stress
at a radius r as τ = −rδ(F)/2 with δ(F) being the net external forcing) we have
(using the boundary perturbation series [18–20]) the forcing in terms of a referenced
shearing stress (τ0, via a ratio of a referenced energy and an activation volume) with

� = −
(

r2

2τ0

)
δ(F), δ(F) = δ(ρe Ez) (2)

where r2 is the mean outer radius of the cylindrical domain within which the electronic
fluid (or liquid) transports through a thin shell region with a mean inner radius (r1)
[19], τ0 = 2kB T/Va , and | − δ(ρe Ez)| is the net electric force along the axis of the
cylindrical domain or the transport direction, dp/dz is the pressure gradient along the
axis, ρe is the net charge density, and Ez (the only electric field) is presumed to be a
constant or uniform,

η̇ = η̇0 sinh(�)+ HOT (3)

with the small wavy-roughness effect being the first order perturbation which is rather
small and thus neglected (HOT means the higher order contributions). Below is a
brief explanation how to calculate η̇ using the boundary perturbation approach (we set
� ≡ ψ).

2.1 Boundary perturbation

Along the outer interface (the same treatment below could also be applied to the inner
interface of which it is not zero), we have η̇ = (du/dn)|on interfaces. Here, n means
the normal. Let u be expanded in ε:

u = u0 + εu1 + ε2u2 + · · · ,

123



J Math Chem (2014) 52:1831–1840 1835

and on the interface, we expand u(r0 + εdr, θ(= θ0)) into

u(r, θ)|(r0+εdr, θ0) = u(r0, θ)+ ε [dr ur (r0, θ)] + ε2
[

dr2

2
urr (r0, θ)

]
+ · · ·

=
{

uslip + η̇r2

ψ

[
coshψ − cosh

(
ψr

r2

)]}
|on interfaces, r0 ≡ r2; (4)

where

uslip|on interfaces = L0
s

{
η̇

[
(1 − η̇

η̇c
)−1/2

]}
|on interfaces, (5)

Now, on the outer interface (cf. [18–20])

η̇ = du

dn
= ∇u · ∇(r − r2 − ε sin(kθ))

|∇(r − r2 − ε sin(kθ))| =
[

1 + ε2 k2

r2 cos2(kθ)

]− 1
2 [

ur |(r2+εdr,θ)

−ε k

r2 cos(kθ)uθ |(r2+εdr,θ)

]
= u0r |r2 + ε[u1r |r2 + u0rr |r2 sin(kθ)

− k

r2 u0θ |r2 cos(kθ)] + ε2
[
−1

2

k2

r2 cos2(kθ)u0r |r2 + u2r |r2 + u1rr |r2 sin(kθ)

+1

2
u0rrr |r2 sin2(kθ)− k

r2 cos(kθ)(u1θ |r2 + u0θr |r2 sin(kθ))

]
+ O(ε3). (6)

Considering L0
s ∼ r2 	 ε case, we also presume sinhψ 
 η̇c/η̇0. With equations

above, using the definition of η̇, we can derive the velocity field (u) up to the second
order:

u(r, θ) = −(r2η̇0/ψ){cosh(ψr/r2)− coshψ [1 + ε2ψ2 sin2(kθ)/(2r2
2 )]

+εψ sinhψ sin(kθ)/r2} + uslip|r=r2+ε sin(kθ).

The key point is to firstly obtain the slip velocity along the boundaries or surfaces.
After lengthy mathematical manipulations, we obtain the velocity fields (up to the
second order) and then we can integrate them with respect to the cross-section (e.g.,
considering the regime: R1 + ε sin(kθ+β) ≤ r ≤ R2 + ε sin(kθ)) to get the transport
(volume flow) rate (Q, also up to the second order here):

Q =
θp∫

0

R2+ε sin(kθ)∫
R1+ε sin(kθ+β)

u(r, θ)rdrdθ = Q0 + ε Q p0 + ε2 Q p2 .
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In fact, the approximate (up to the second order) net transport (volume flux) rate reads:

Q = πη̇0{L0
s (R

2
2 − R2

1) sinhψ (1 − sinhψ

η̇c/η̇0
)−1/2 + R2

ψ
[(R2

2 − R2
1) coshψ

− 2

ψ
(R2

2 sinhψ

−R1 R2 sinh(ψ
R1

R2
))+ 2R2

2

ψ2 (coshψ − cosh(ψ
R1

R2
))]} + ε2{π

2
uslip0(R

2
2 − R2

1)

+L0
s
π

4
η̇0 sinhψ(1 + sinhψ

η̇c/η̇0
)(−k2 + ψ2)[1 − (

R1

R2
)2] + π

2
η̇0[R1 sinh(

R1

R2
ψ)

−R2 sinhψ]
−π

2
η̇0

R2

ψ
[coshψ − cosh(ψ

R1

R2
)] + π

4
η̇0ψ coshψ[R2 − R2

1

R2
]

+πη̇0{[sinhψ + L0
s coshψ(1 + sinhψ

η̇c/η̇0
)](R2 − R1 cosβ)} + π

2
η̇0

R2

ψ
coshψ

+L0
s
π

4
ψ2η̇0

coshψ

η̇c/η̇0
[1 − (

R1

R2
)2]} coshψ. (7)

Here,

uslip0 = L0
s η̇0

[
sinhψ

(
1 − sinhψ

η̇c/η̇0

)−1/2
]
. (8)

The (referenced) shear rate is

η̇0 = 2
Va

Vm

kB T

h
exp

( −E

kB T

)
, (9)

which is a function of temperature, the activation energy (E), the activation volume,
and the length scale [16]. K0ν0 in Eq. (1) is temperature dependent and the value could
be traced in [18,20]. The remaining task is to fix the value of � by prescribing r2 and
|δ(ρe Ez)| with different temperatures. Once the detailed or corresponding geometric
scales in experimental setup were unknown (closely relevant to our formulations), we
can select |δ(ρe Ez)| = 1 (or r2 = 1) for convenience. After all these, the remaining
in the equation (1) is the unique relationship between Va and T for a fixed τ (∝ ρR).
Once we obtain the details of ρR (∝ τ ) vs. T then we can know which parameters
are dominated. Note that most of the mathematical derivations could be found in
the cited references of [18–20]. For instance, we can use our approach to identify
the onset temperature of high-temperature superconductors (cf. [20]) after calibrating
some physical as well as geometric parameters.
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3 Numerical results and discussion

We firstly verify our approach by comparing our numerical results with those elec-
trical resistivity (ρR) measurements considering chemical compound: Rb0.8Fe2Se2
[11]. The relationship between ρR and τ could be traced in [20]. Figure 1 shows that
there will be nearly frictionless or almost zero-resistance states (τ ∝ ρR ∼ 0) if we
select the activation energy to be 2 × 10−20 J. We can observe a starting (sharp) drop
of the (electrical) resistance (∝ ρR) at T ∼ 31 K (Va ≈ 7.1 × 10−24m3) and there
is almost zero resistance below 28 K (Va ≈ 4.4 × 10−24m3). It illustrates there is
a very low electrical resistivity around this temperature regime for selected physical
parameters. Differenct symbols in Fig. 1 represent different activation volumes which
are temperature dependent and are illustrated in Fig. 2. The qualitative as well as
quantitative similarity are that this critical temperature (Tc) resembles that found in
superconductor Rb0.8Fe2Se2 [11] (cf. Fig. 2a for Sample A: The Wavelength Dis-
persive Spectrometer (WDS) analysis shows the chemical compositions are Rb/Fe/Se
= 0.93(2)/1.70(2)/2.00 [11]). Note that from the expression of |τ | = [r δ(ρe Ez)]/2
(cf., e.g., [20]), with r �= 0, we can understand that below Tc, as τ ∼ 0, the external
forcing or electric-field could be absent (due to the persistent current occurring).

After verification of this chemical doping (or chemical pressure) effect, we shall
demonstrate the effect due to a small amount of defects (considering vacancy or hole)
on the transport of many electrons (cf. Fig. 2 in [20]). We remind the readers that it
was remarked in Gooch et al. [11]: Sample B behaves as a narrow-gap semiconductor
as predicted. The latter gives us the idea to find out the valid range of activation
parameters before the time-consuming searching.

We illustrate the activation volume effect in Fig. 3. The activation energy is 2×10−20

Joule. We decrease the temperature from around 32 to around 15 K. The corre-
sponding Va for T = 32 and T = 15 K are 8 × 10−25 m3 and 8 × 10−26 m3,
respectively. The resistivity (τ ∝ ρR , cf. [20]) increases exponentially as temperature
decreases The trend is qualitatively similar to that reported in Fig. 2b (lower panel)
of Gooch et al. [11] considering Sample B which has the same chemical compound

Fig. 1 Calculated resistance
(∝ ρR [20]) using an activation
energy 2 × 10−20 J. There is a
sharp decrease of resistance
starting from around T ∼ 31 K.
Below around 28 K
(Va ≈ 4.4 × 10−24m3), the
resistivity is almost zero. This
critical temperature resembles
that found in superconductor
Rb0.8Fe2Se2 (cf. Fig. 2a therein
for Sample A) [11]
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Fig. 2 Activation volume vs.
temperature (K) and other
parameters are the same as those
in Fig. 1
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as Fig. 1 above: Rb0.8Fe2Se2 or with the same nominal compositions (Rb/Fe/Se =
0.8/2/2) for Fig. 1 above (note that the WDS analysis shows the chemical composi-
tions Rb/Fe/Se = 0.90(1)/1.78(1)/2.00 [11]). Note that as reported in [7], considering
Rb0.85(Fe1−ySe)2, their data imply that the ordering of the vacancies in the FeSe layer
may be present in both SC and non-superconducting states.

Before we give the short summary of our works here we like to make some remarks
about our illustrations. We firstly remind the readers that the equivalence of zero
resistivity and the Meissner effect has been derived in [23]. Our presented results,
Figs. 1 and 2 are related to the Fig. 2a and b in Gooch et al. [11] which (resistivity) was
measured without imposing external magnetic fields. Nevertheless the diamagnetic
signal did appear for the Sample A under the zero-field-cooling. Meanwhile there
is no diamagnetic signal for the Sample B [11]. Although we can here attribute the
different electrical properties (two samples displaying the same crystal structure or
the same nominal composition [11]) to the Eyring’s hole- or defect-induced transport
along the nano-scale interface [16,17,19,20] via the different activation volumes.

Other explanation [24] could also be valid: Due to the inhomogeneity in this system:
Rb0.8Fe2Se2. Note that it is possible as a whole the metallic phase (including the SC
islands) coexists with the insulating regions. Due to the proximity effect the size of the
SC regions should be of order or larger than the coherence length; otherwise, the SC
state will be destroyed by the proximity contact with the normal matrix [24]. The latter
could be the case of Sample B in Gooch et al. [11]. Meanwhile considering measure-
ments of Rb0.77Fe1.61Se2 (Tc ∼ 32.6 K) [25] it was shown that the antiferromagnetic
insulating phase is just a byproduct of Rb-intercalation and its magnetic properties
have hardly any relation to the superconductivity. Borisenko et al. concluded that the
key ingredient for superconductivity (Rb0.77Fe1.61Se2) is a certain proximity of a van
Hove singularity to the Fermi level [25]. We noticed that considering the effective D2d

symmetry for the chains of tetrahedra in the KFeS2 structures we have one distorted
example: RbFeSe2 and one undistorted example : CsGaS2 (cf. Table 6 in [26]). Based
on our above reasoning it is possible that the latter could be SC by partial replacement
of Ga by S (with a more complex layer structure similar to the layer pnictides) or by
pressurization at higher pressures.
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Fig. 3 Calculated resistance (∝ ρR [20]) using an activation energy 2 × 10−20 J. The resistivity increases
exponentially as temperature decreases (cf. Fig. 2b for Sample B in Gooch et al. [11]). This unusual behavior
resembles that found in chemical compound: Rb0.8Fe2Se2 with the same nominal compositions (Rb/Fe/Se =
0.8/2/2) for Fig. 1 above (note that the WDS analysis shows the chemical compositions Rb/Fe/Se =
0.90(1)/1.78(1)/2.00 [11])

4 Conclusion

To give a brief summary, we have adopted the TS approach (based on the quantum
chemistry via the hole- or vacancy-induced transport developed by Eyring [16,19,20])
to study the hole(defect)-induced SC (considering Rb0.8Fe2Se2 in Gooch et al. [11]).
Our approaches can not only identify the onset temperatures of SC Rb0.8Fe2Se2 based
superconductors in Fig. 2a of Gooch et al. [11] considering the chemical doping effect
but also, with the tuning of different activation volumes, demonstrate the possible semi-
conducting phase of Rb0.8Fe2Se2 in Fig. 2b of Gooch et al. [11] at low-temperature
range. Based on our results it is crucial to tune the activation volume (say, by care-
fully annealing and preparing of the samples) for increasing the SC temperature more
effectively. We shall investigate other interesting issues in the future [27].
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